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Received 12 August 1980, in final form 23 September 1980 

Abstract. A simple procedure is outlined for adapting the basis spanning the irreducible 
representations of the permutation group SN to those spanning the product representations 
of the subgroup SN, OSN, where NI + N2 = N. An algorithm based on the procedure is also 
discussed. 

1. Introduction 

Recent studies of multishell configurations of electrons in atoms (Harter and Patterson 
1977) and interacting subsystems of electrons in molecules (Kaplan 1975, Sarma and 
Dinesha 1979) have led to the consideration of a basis spanning the irreducible 
representations (irreps) of the unitary group U(nl+ n2) symmetry adapted to the 
subgroups U(nl)OU(nz). The unitary transformation which relates the basis 
of U(n) adapted to the subgroup chain U(n)=,U(n -1) 2 . . . 3U(1)  to the one 
adapted to U(n) =,U(n1)OU(n2) is relatively simple for the irreps (2hz ,  lhl-hz) 
( A l  + A 2  = N, A 1  - A 2  = 2s) of interest in many-electron studies. For more general spin 
systems such as the nuclear spins used in hyperfine interaction studies (Harter and 
Patterson 1979), the problem tends to become quite complicated. The first step in the 
subgroup adaptation required in such cases is the efficient generation of a canonical 
basis for an arbitrary irrep ( A ) = ( A l ,  A 2 , .  . . , A , )  ( A 1 3 A 2 Z  . . . *A,, a 0 )  of U(n). An 
algorithm has recently been developed by Sarma and Rettrup (1980a,b) €or generating 
these basis states by computer. The second step in generating the non-canonical basis is 
to obtain the linear transformation relating these basis states of U(n) to those spanning 
(p )O(v )  of U(n1)OU(n2). Since this problem is quite complicated, it will be tackled in 
stages. As a first step we attempt, in the present note, the adaptation of the Young 
orthogonal basis of an irrep [A]  of the permutation group SN on N particles to the basis 
spanning the irreps of the subgroup S N 1 0 S N 2  ( N I  + N2 = N ) .  An algorithm has been 
obtained for determining the subduction coefficients for the restriction [A]&L]@ [ v ]  of 
S N  = S N 1 0 S N 2 .  Introducing a carrier space for the representations of U(n) it should be 
possible to extend the present considerations to the subgroup restriction of the unitary 
group. This aspect to the problem has, however, not been dealt with here. 

A recursive scheme has been outlined in § 2 for the symmetry adaptation of the 
Young orthogonal basis for the irreps of SN to the product basis of the subgroup 
S N 1 0 S N 2 .  The procedure has been illustrated in § 3 using a number of examples. A 
brief discussion of the procedure has been presented in 4. 
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566 C R Sarma 

2. Reduction of outer product representations of SN10SN2 c SN 

Let S N  be the permutation group on N identical particles and consider the subgroup 
SNl@SNz where N I  + N2 = N. Let [A] be an fk-dimensional representation of S N  and 
[p], [VI those of SN1, SN2 respectively. This fKlfh2 dimensional irrep [p]O[v] of 
SN10SN2 yields on induction a representation of S N  which is decomposable into the 
irreps of S N  as 

where ah,, L 0 is the multiplicity of occurrence of [A] in [p]O[v]. Using the rules for 
reduction of outer products of S N  (Hamermesh 1962 p 250) it is straightforward to 
determine the irreps occurring on the right of equation (1). As an illustration consider 
the product [2,1]O[2,1] of S 3 0 S 3  c S g  which can be diagrammatically realised as 

a a  * a  a a a  a * -  a 

b 

a .  . .  
+ * a b + . a  

b 
b + *  

b 
a - *  a 

0 

* .  . .  

a 
b 

* b  - a  

a a a b  
+ + + 

b 

where the notation and the rules used are those given by Hamermesh. Thus for this 
example equation (1) reduces to 

[2, 1]@[2, 11 = [4,2] + [4, 1’1 + [32] + 2[3,2, 13 + [3, 12] + [23] + [2’, 1’1. 

A dimensionality check on equation (1) is provided by the formula (Robinson 1961 p 
5 5 )  

N !  
Ni!Nz! f L f k  = c ah,,fk. 

An interesting feature of equation (1) is that aLv = 0 unless [p] of SN, is a sub-structure 
of [A] of S N .  This, in turn, permits us to consider the inverse problem of determining the 
possible [VI of SNz whose product with a fixed [ p ]  of SN1 yields a fixed [ A ]  of S N .  It is 
possible to do this by starting with [A] of S N  and assigning the first N I  of the particles to a 
fixed [p]. We then consider the skew diagram (Robinson 1961 p 48-5 1) [A] - [p]. This 
skew diagram is decomposable into regular Young diagrams of SNz (Robinson 1961 p 
64). The resulting Young diagrams can be obtained using rules similar to those for 
outer products: 

(i) Assign a set of indices a to the top row of the skew diagram [A]-[p]. 
(ii) Assign a, b to the row immediately below this such that (a) no two a’s share a 

column, (b) at every stage the number of a’s L number of b’s and (c) the 
resulting diagram is a lattice permutation, 

(iii) For the third row, assign a, b, c so that the same conditions as in (ii) hold for all 
three indices. Proceed in this manner until all the rows of [A]-[p] are 
exhausted. 
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(iv) Obtain regular Young diagrams [VI by assigning all a’s of the skew diagram to 

As an illustration, consider [42, 21-[3, 12] which has the skew shape 
the top row of [ V I ,  all b’s to the next row and so on. 

A self-explanatory diagramatic scheme of reduction satisfying the above rules is 

In this process we observe that the structure 

is not possible since it does not satisfy rule (iic) above. Using rule (iv) we then obtain 

[42, 21-[3, 12]=[3, 2]+[3, 12]. 

The correctness of the above reduction for the general case (Robinson 1961 p 64) 

[A 1 - [FI = c a ^ , u ( W ” ’ l  
k 

may be verified using the formula (Robinson 1961 p 49), 

(3) 

where A i  and pi are row lengths of [ A ]  and [p] respectively and, in the determinant, 
l /m ! = 1 if m = 0 and l /m ! = 0 if m < 0. These considerations now permit us to define 
a subduction series as follows: Let [ A ]  be an irrep of S N  which admits a regular 
substructure [p] of S N 1  over the first N I  particles. Then the set { [ v ( ~ ) ] ~ [ v ( ~ ) ]  E [ A ]  - [ p ] }  
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gives the possible irreps of S ,  which determine the symmetries of the last N2 particles. 
Equatioii (3) then yields the subduction sequence 

For notational convenience we assume that [v ' l ) ]  > [v")] > . . . are in alphabetical order 
by the order of decreasing row symmetry from top to bottom in the corresponding 
Young diagram (Robinson 1961 p 36). 

The subduction series of equation (5) implies a corresponding linear transformation 
for the basis states spanning the respective irreps. Let /[A];  r ) ,  l [p ] ;  s), and l [ V ( k ) ] 7 k ;  t )  
be the basis spanning [A], [ p ]  and [ v ' ~ ) ]  respectively with 7 k  as an auxiliary index to 
distinguish between the multiply-occurring [ ~ ( ~ ' 1 .  For a specific [ ~ ( ~ ' 1  the subduction 
procedure implies the linear transformation (Harter and Patterson 1977, Sarma and 
Dinesha 1979) 

where the summation on the right is restricted to possible standard Young tableaux t: of 
[ A ]  which admit a fixed subtableaux structure r: of [ p ]  over the first N I  entries and 

are the required subduction S coefficients. If an orthogonal basis is used for realising 
the irreps, the transformation of equation (6) can be chosen to be unitary so that we 
have 

by analogy with the Corresponding relations for Clebsch-Gordan coefficients 
(Hamermesh 1962 p 270). 

A straightforward scheme for determining the right-hand side of equation (6) is to 
apply the permutations P over the last N2 entries to both sides of the equation. This 
leads to a system of linear equations in the unknown S coefficients weighted by the 
representation matrices for the permutations. Thus a knowledge of these represen- 
tation matrices for the irreps [ v ' ~ ) ]  and [ A ]  should permit a determination of the 
required coefficients. This procedure, however, becomes quite complicated as N2 

becomes large since both the number and the size of the required representation 
matrices increase rapidly. An alternative is to use the maximal invariance subgroup of 
permutations of I [ v ' k ' ] T k ;  t )  on both sides of equation (6). This would require only a 
knowledge of the representation matrices of [A]  under the limited subset of permu- 
tations defined over the last N2 particles. The difficulty with this approach is that now 
the linear combinations occurring on the right-hand side of equation (6) have contribu- 
tions from all preceding tables spanning [ v ' ~ ) ]  and also those from the higher irreps [v")] 
(1 s j < k )  occurring in the subduction series. Thus this procedure requires a complete 
knowledge of all these higher symmetry structures so that their contributions to the 
right-hand side of equation (6) for the given [ v ' ~ ' ]  could be eliminated by ortho- 
gonalisation. Though this scheme also appears complicated it is worth noting that it is 
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quite straightforward and does not involve all the permutations over the last N2 
particles. These aspects will now be considered in outlining the implementation of the 
procedure. 

3. Calculation of the subduction coefficients 

As a starting point for the determination of the S coefficients occurring in equation (6), 
consider first the product [ A ]  5 I [@];  s)  X j[v‘(k)]7k; 1) where the table t[ly(‘)’ is the first of 
the set in alphabetical ordering (Hamermesh 1902 p 201) spanning the irrep [ v ‘ ~ ) ] .  The 
Young basis corresponding to this table is invariant under each of the permutation 
groups of the first vik) ,  next vik’, etc particles where vik) ,  vy’, . . . , .E,’ is the partition of 
the last N2 particles defining the irrep [v‘~,’]. This invariance requires that the 
combinations l[A]; r )  occurring on the right of equation (6) also reflect this symmetry. 
This, in turn, implies that in the skew portion of [A] we need only consider those tables 
in which no two of the first Y ! ~ ’ ,  the second vik) etc entries share a column. The number 
of ways in which such substructures of the skew portion of [A] can be partitioned defines 
the minimum number of irreps on the right-hand side of equation ( 5 )  which cannot be 
related by any permutation of this invariance subgroup of S N 2 .  As an illustration of how 
such substructures occur, consider the restriction [ S ,  4,3]  4 [3,2, 1]0[32]  of SIZ to 
&OS6 where [3*] is an irrep occurring in the decomposition 

[5,4,3]-[3,2,1]=[4,2]+[4, 12]+[3’]+2[3, 2, 1]+[23]. 

Since every standard tableau t55,4,31 s anning the above skew structure has a specified 
standard subtableaux structure t?s2s1Pwe omit this portion of the former and indicate 
explicitly only the row locations of the last N2 entries in the lattice permutation symbol. 
For example, in terms of Yamanouchi symbols (Hamermesh 1962 p 221) 

.T 
t [ A l - [ ~ l  

? 
p l  
E 

Consider now the possible choices of substructure within the skew portion of [5 ,4 ,3]  
which would admit symmetrisation over the first three and last three entries individu- 
ally. An examination of the skew diagram readily yields the two possibilities 
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where the entries from the set 7 ,  8 , 9  are assigned to the positions marked 0 and those 
from the set 10,11,12 are assigned to the x positions so that the entries read increasing 
from left to right in each row and increasing from top to bottom in each column. It can 
be readily seen that the two structures above cannot be related by any permutation of 7 ,  
8, 9 or 10, 11, 12 among themselves. Thus, assuming that we can determine the linear 
combinations of standard tableaux t55,4331 which have the required symmetry for each of 
the structures (I) and (11), we would still be left with two essential unknowns which 
define the linear combination of (I) and (11) required for the subduction. The explicit 
form of the linear combination may be represented as 

[ 5 ,  4, 31 1 1[3, 2, 11; s)/[3']; 1) = A~[{s}(l12)(233)])""31+B/Co(123)(123)])~5~4~31 

where a brace notation is introduced to indicate that each such symbol is a totally 
symmetric combination of basis states I[h]; r )  obtained by permutations of the cor- 
responding symbols within each bracket. An expansion of this symmetrised combina- 
tion in terms of the individual Yamanouchi symbols follows on using the transformation 
properties of the Young orthogonal basis under elementary transpositions of SN (cf 
Hamermesh 1962 p 221). As an outline of the procedure for obtaining the symmetrised 
linear combination consider the leading Yamanouchi symbol [{s}ll, . . . , ij, . . .] occur- 
ring in it. Using the'correspondence between the Yamanouchi tableau and the standard 
Young tableau, we can readily work out the axial distance (cf definition of ( l /p ) ,  
Robinson 1961 p 39) between the entries i and j in the Yamanouchi symbol as 

d,, = (P I  + n, - 4 - (F, + n, - j )  (8) 

where EL,  and p, are partitions of p and n, and n, are the number of i's and j ' s  
respectively to the left of the given pair i , j  in the skew portion of the Yamanouchi 
symbol. 

Consider now the linear combination 

I[{S}II, . . . , ij, . . . I )+c , , / [ { s}~~ ,  . . . , ji, . . .I> (9) 

which by a suitable choice of the constant C,, is to be made symmetric under the 
transposition of the consecutive entries corresponding to i and j of the Yamanouchi 
symbols occurring in the respective standard Young tableaux. Since the Young 
orthogonal representation matrices have a simple form for such elementary trans- 
positions (Robinson 1961 p 38) and the required combination has to be symmetric, we 
obtain the result 

1 = T ( l / d / ) +  C,,(d; - 1 Y 2 / d U ,  (10) 

which in turn fixes the value of C,,: 

In equations (10) and ( l l ) ,  the upper (lower) sign is to be used if i < j ( i  a j ) ,  If i = j ,  the 
Yamanouchi symbol represents a Young tableau which is already symmetric under the 
interchange of the corresponding entries. If not, the expression (9) with Cij as 
determined by equation (11) leads to a combination which is symmetric under this 
interchange. This procedure is repeated starting with each of the resulting tables until 
the complete symmetrised combination is obtained. 
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As an illustration of the procedure, consider the linear combination corresponding 
to l[{s}(112)(233)]) for the irrep [5,4,3] of SIZ where {s} represents a Yamanouchi 
symbol for [3,2, 11 of S6 defined over the first six particles. Omitting the label [5,4, 31 
we have 

/[{s}(112)(233)]) = j[{s}112233])+JZ/[{s}l12323]) 

+ J-B~[{s}112332]) + JZl[{s}l2 12331) 

+2([{s}121323]) +2J51[{s}121332]) 

+ 6/[{s}211233]) +2&1[{s}211323]) 

+ 6j[{s}2 1 13321) 

where, for example, the numerical factor in front of /[{s}l12323]) follows on using 
equation (8) since 

d23 = (2 + 1 -2) -(1+ 0-3)  = 3 

so that on using equation (1 1) 

Since every permutation P E  S N  can be represented as a product of elementary 
transpositions, the invariance of the above combinations under the latter ensures a 
corresponding invariance under the former. As the above example illustrates, the final 
indeterminacy of the subduction coefficients for a restriction is related to the possible 
distinct ways of defining symmetrisable substructures in the skew portion of [A] 
corresponding to the partitions vik) ,  v i k ) ,  . . , , U:’ of [ v ‘ ~ ) ] ,  The reason for the occur- 
rence of multiple symmetrisable substructures is, in turn, due to the fact that in this 
process we are essentially trying to obtain [3*] of S6 from an outer product of the identity 
irreps of S30S3.  Such an outer product leads to theirreps [6], [ 5 ,  11, [4,2] and [32] of 
Sg 3 S30S3 (cf equation (2.24) Robinson 1961 p 40). Since the subduction series for 
the example under consideration does not allow for the presence of the irreps [6] and 
[ 5 ,  11, the only possible contributions to the subduction coefficients for 
[5 ,4 ,3]  4 1[3,2, 11; s)1[3’]; 1) arise from the occurrence of [4,2] in the outer product 
S30S3. Thus if we first determine the subduction coefficients for the higher symmetry 
product [5,4,3] J. 1[3,2, 11; s)([4,2]; 1) and orthogonalise to the present result we can 
determine the unknown coefficient B in terms of A which can then be fixed using the 
normalisation condition. 

To complete the example being considered let us obtain the subduction coefficients 
for [5,4, 31 1 ([3,2, 11; s)([4,2]; 1). Using the same procedure as above, we first 
observe that there is only a single choice possible for the symmetrisable substructures 
corresponding to 1[4,2];1) occurring in [5,4,3]-[3,2, 11 as 
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This leads to 

[5,4,31.1 1[3,2, 11; s)l[4,21; 1) = Nl[{s}(l123)(23)]) 

= N(l[{s)l123231) + JTI[{s}l132231) +J21[{s}121323]) 

+J31[{sll231231)+ (3/J2)1r{sl1312231) +3/[{s}132123]) 

+ JZ/[{s)211323]) + 3/[{s}2131231) + JE/[{s}231 1231) 

+ (i5/2)1/2/[{.~}3ii2231) +Ji31[{~}3121231) 

+ 3J5/[{s}321123])+J3~[{s)112332])+ 31[{s}113232]) 

+ q{s}1213321)  + 3/[{~}123 1321) + (27/2)”’~[{s}131232]) 

+3J3/[{s}1321321)+3J21[1{s}211332]) 

+ 3&~[{s}213132])+3J5j[{s}231132]) 

+ 3 ( 5  /2)1’21~{s}3 1 12321) + 3JSI[{s}3 12 1321) 

+ 3fil[(s}321132]), 

where N = 1/4& is a normalisation constant. Using this result, we can determine the 
unknown coefficient B occurring in the restriction [5,4, 31 1 1[3,2, 11; ~ ) 1 [ 3 ~ ] ;  1) in 
terms of A as, 

B = --3J?A/16J2 

The final unknown A can be fixed by normalisation leading to the complete deter- 
mination of the S coefficients for the required restriction. 

The algorithm for obtaining the S coefficients for any restriction may now be stated 
as follows: 

(i) We first obtain the reduction of [A]-[p] in terms of the irreps [ v ‘ ~ ) ]  of SNz .  
(ii) The subduction coefficients for the first Young basis of the highest symmetry 

irrep [v“’] of S N 2  occurring in the above reduction are obtained using the sym- 
metrisation technique. In this context it is worth noting that this irrep occurs once only 
in the reduction (Robinson 1961 p 40). This permits complete determination of the S 
coefficients for [A] .1 I[’]; s)l[v(’)]; 1). 

(iii) If the S coefficients for any other table of this irrep are required they are 
obtained using the transformation properties of the Young basis under elementary 
transpositions of S N z .  

(iv) The S coefficients of the next lower irrep [v ‘~ ) ]  are determined using the 
symmetrisation technique and orthogonalisation with respect to the necessary basis 
states occurring in the restriction [A] 1 [ ~ ] O [ V ( ~ ) ] .  Any ambiguity due to the multiple 
occurrence of [ v ( ~ ) ]  in the reduction of [A]  - [ p ]  is resolved as was done by Hamermesh 
in his study of inner product reductions of S N  (cf example on pp 274-275, Hamermesh 
1962). 

(v) The procedure is continued until the required restriction is reached. 
Since outer products are commutative, we can always choose NI 3 NZ without any 

loss of generality and reduce the computational labour involved. 
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4. Discussion 

The procedure outlined in Q 3 is based essentially on a successive lowering scheme 
starting with the determination of the subduction coefficients for the first of the standard 
tables spanning the highest irrep occurring in the series for [ A ] - [ p ] .  This necessarily 
involves obtaining and storing a certain amount of information on the S coefficients for 
the irreps higher in row symmetry than the required one. In this sense the procedure is 
similar to that used by Moshinsky (1968) for obtaining the canonical basis spanning an 
irrep of the unitary group (cf Moshinsky 1968 pp 21-25). 

The fact that the canonical basis spanning the irreps of the unitary group can be 
obtained using Wigner operators of S N  (Kaplan 1975 p 43, Sarma and Rettrup 1977, 
1980, Sarma and Sahasrabudhe 1980, Paldus and Wormer 1979) should permit us to 
obtain the S coefficients for the restriction U ( n  + m )  1 U ( n ) @ U ( m )  by using the results 
obtained from the procedure outlined in § 3 .  This aspect of the problem is currently 
under investigation. 

Finally, it is to be noted that the logical structure of the present procedure is 
relatively simple and the storage requirements much less than those for direct or 
genealogical approaches. This should permit an easy computerisation of the scheme. 
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